
AGILE
BEYOND

JESSE TAYLER  WITH  ALEX CONE

DELIVERING SUCCESSFUL SOFTWARE

IN A POST-AGILE WORLD

© 2018 Jesse Tayler and Alex Cone

All rights reserved. No portion of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopy, recording,
scanning, or other—except for brief quotations in critical
reviews or articles, without the prior written permission
of the publisher.

For information, contact:
Beyond Agile
222 E. 34th Street, #1826
New York, NY 10016

http://beyondagilethebook.com/

Book design by Alan Barnett

Printed in the United States of America

CONTENTS

Preface	 1

Introduction	 3
In the Beginning Things Got Extreme	 3

The Age of Agile	 4

Beyond Agile	 4

Bowling Has a Season	 7
The Discipline of Phase	 9

F.I.D.E. Laws of Chess 11.5	 9

New York City Taxi Cab Drivers	 11
There Are Speed Limits	 11

What If We Could See Software Design?	 12

An Iceberg Lays 90% Unseen	 13
The Other 90%	 14

The Software Equilibrium	 14

Urgent vs. Important	 17
Fixing Bugs Is Not Progress	 18

Refactoring Is Part of Everyday Life	 19

What Is That Smell?	 20

No Baby in a Month	 21

iv  |  Contents

Design Matters	 23
Bug-Fix Approaches Cause Software Enropy	 24

Evaluating Quality Does Not Require Reading Code	 25

Balance & Serialize	 27
Balance First	 28

Ticket to Defer	 28

Are We on Time Yet?	 31
The Current Phase is Bellwether	 32

A Simple Rule of Thumb	 32

Testing	 35
How About Sensible Testing?	 36

Testing Is Occupational Safety	 36

Don’t Ground All Airplanes	 37

Anatomy of a Release Plan	 39
The Seven Rudimentary Elements of Communication	 40

“Software Capital” The Pursuit of Quality	 43
Forces in Motion	 45

What Goes Around, Comes Around	 47
Observance of Cycles Has Additional Benefit	 48

Glossary	 49

Acknowledgments 	 51

About the Authors 	 52

1

PREFACE

This book is for anyone with a stake or interest in the outcome of software
production. It is meant to assist those tasked with the management and
scheduling of software teams with accuracy and without requiring expertise
in any one specific software discipline.

Beyond Agile begins where contemporary software process leaves off.
It is a modern playbook or a guide to understanding how, and why, certain
groups of software engineers are so highly effective while others are not.
This difference is not due to the collective IQ of the engineering staff. This
difference is merely a reflection of process execution.

“�Design is a funny word. Some people think
design means how it looks. But of course,
if you dig deeper, it’s really how it works.”

— Steve Jobs

We’ll examine how, in software, there is no relationship of complexity
between the visible portion (interface) and the underlying design structure
(implementation). In other words, if you were to show an engineer a picture
of an interface and ask how long it would take to implement, there is no
sensible answer; the question ignores the underlying nature of software. The
relationship is moot, and this fact makes software particularly challenging for
most people, technical and nontechnical alike.

Beyond Agile is derived from and focused upon projects that rely on
object-oriented design and use structured, compiled source. However, these
same practices can be readily applied to any software, even the outermost
layers of scripted web interfaces. Beyond Agile is equally applicable
regardless of the project management methodologies each software team
adopts. It does not dictate how often teams should meet, communicate,

2  |  Preface

or even deploy finished work. Beyond Agile is agnostic of specialized
technique, respecting the fact that each possesses its own rhythm and
practicality.

Beyond Agile makes this expert knowledge visible and available to
everyone because what is at stake is everything we thought we knew about
the world of software.

Let us go, beyond agile.

3

INTRODUC TION

Software has become a part of life for nearly everybody on earth. From
the logistics of shipping to the calculation of finance or simply the daily
communication that makes our world go, the computer has become the
center of it all.

Software is what makes a computer do all those things that we want it
to do. We see it is the lifeblood of our modern world —part of nearly every
business. Many of the world’s most valuable enterprises make some of the
world’s most visible products and services entirely out of software.

Software construction however, is entirely invisible. The question arises,
how does one determine the progress of software construction? How does
one reliably estimate schedule, or guide software development toward
greatest efficiency. And how does one measure something if it can’t even be
seen in the first place?

This book provides a way of observing the invisible. It is possible to detect
the changes in behavior patterns happening across software construction,
and to use these insights to assess schedule and measure quality of work
with a significant degree of accuracy.

This process is informed by the ways software construction itself evolved,
so let us start our story at the beginning.

IN THE BEGINNING THINGS GOT EXTREME

The term software was coined in the 1950’s and the first University Degree
in Computer Science was offered in the 1960’s. At that time, pools of
programmers would produce what was called a ‘’cascade release’’ of
completed software strictly held within a rigorously controlled process.
Interface consisted of type-written text. There were no graphic designers,
or artists of any sort, involved in software construction. Progress was not
speedy, but reliability was the only critical concern. Mission-critical software

4  |  Introduction

systems of sufficient complexity (e.g. NASA) continue to use this rigorously
controlled process today.

As software became increasingly ingrained in the everyday world, software
construction techniques evolved as well. Cascade gave way to the far more
rapid ‘’Extreme-Programming’’ era.

Extreme programming emphasized the value of pair-programming and
fast moving release strategies. Extreme programming extolled the potential
of small teams working collaboratively.

THE AGE OF AGILE

The emergence of the web and scripted programming necessitated that the
software construction industry change once again. Scripted languages were
brisk but also brittle and ignited a whole new era, known today as ‘Agile’.

In the era of Agile, a team’s ability to quickly adjust on the fly was considered
the hallmark of effective management and an indication of achieving
reliable foundations while avoiding unnecessary weight in process.

However, the reality is that Agile had limits in its applicability in the
modern world. Software construction has become vastly more complex with
the advent of mobile computers. Today, we combine mobile apps, reactive
web and traditional server systems and expect them all to work together
as a single, unified product or service. This multi-disciplinary environment
generates a measure of complexity greater than the entire prior evolution
of software construction combined. The range of languages and related
disciplines used across teams today creates a new era of challenge for
project management.

Those who do not see and adjust to the complexities inherent in today’s
software universe will continue to be increasingly off the mark.

BEYOND AGILE

Which brings us to beyond Agile, a methodology that is product of studying
software engineering experts over decades. This methodology is shared
among software projects of all shapes and sizes, spanning from high-energy
startups to validated financial, clinical and regulatory controlled software
systems. Teams that adopt this methodology are highly effective.

Introduction  |  5

Every technology has experts who derive great value from specialized
techniques. Upon close inspection, these experts are not only effective in
a software language but are, perhaps unknowingly, arbiters of a sensible
approach, because they are successful in ways that deliver advantageous
results. This personal success however, does not necessarily translate across
different types of teams and technologies. This success does not answer
how to organize group initiatives or interdepartmental efforts into one
coherent software methodology. This success, in of itself, does not help
schedule or predict outcomes of software construction at all.

There is an inherent nature to software construction, one we can take
advantage of to great effect. Beyond Agile breaks down this successful
methodology into a set of properties that harness the power of software’s
true nature.

In Beyond Agile, we’ll show how software construction generates
cyclical waves of potential energy we can either ride or fight. This ebb and
flow greatly effects every software project, whether it is recognized and
understood or not. This ‘’cycle-based’’ philosophy, is not about day-to-day
tactics but rather a software construction process that is fundamentally
successful.

7

BOWLING HAS A SEASON

Did you know that bowling has a season? It is an indoor sport! Now, why
would they need a season?

Seasons usher changes in behavior and activity which naturally occur
as we move through repeating cycles. This observation is the basis behind
the extraordinary efficiency and organization of all professional sports, even
those without regard to the elements.

In other words, those who are responsible for the effectiveness of The
National Bowling League recognize what many software project managers
do not. It is the schedule itself, the cycle of seasons that provides the
scaffolding for order, and the assurance of predictability.

Every cycle has phases you can tap into and work in harmony with.
Harnessing the energy generated during change of phase, can move you
forward ever faster. Project managers can ignore this, but the flow of energy
is a fact of all cycles, even ones without foliage to show for it.

Consider for a moment what experts in software engineering do with
their time: they intuitively work within a repeating cycle that is responsible
for predictable changes in habits and activities, just like the seasons of

8  |  Beyond Agile

the year. Let’s take a closer look at what those phases are, and how their
repetition is the recurring heartbeat of software construction.

Each software construction cycle can be divided into four distinct phases:
design, develop, debug and deploy. You could call it spring, summer,
winter and autumn if you prefer, the point is the same: changes in behaviors,
habits and activities, both great and small, are dictated by the change of
phase within cycles.

Let’s break this down in further detail.
At the start of every software project, every release, or any segment of

software work, regardless of its size—you’ll find there are a lot of freeform
ideas about how to approach problems. This is only natural. We call this most
collaborative phase Design.

There comes a time when these freeform ideas give way to stretches
devoted to the bulk of the intended development. The so called Develop
phase is often the longest and least directed in the software Cycle.

As timelines and milestones approach, unfinished work must be
completed or deferred to prepare for a stable release. During this structured
Debug phase, hit-lists of issues (even formally naming bugs if they are
tenacious) get identified and attacked. This phase is often the most directed
of any phase because of this rigorous triage approach and formality of
process.

Finally, we enter a phase we simply refer to as Deploy. Controls and
procedures take precedent. We follow the book. We use countdowns,
checkoff-lists and procedural guides which have been predetermined for
every step. This phase is typically the least collaborative precisely because of
the required attention to studied and predicted situation handling.

Figure 1. Phases. The four phases of
the software development lifecycle.

Bowling Has a Season  |  9

It is through taking advantage of this change of phase, tapping into
the flow of each Cycle and channeling the energy into action that makes
development groups take off and fly.

THE DISCIPLINE OF PHASE

Cycles repeat.
Endless cyclical repetition provides for a tremendous efficiency in what

we might refer to as the discipline of phase. Just like an army marching
predictably in lock-step and turning in unison requires practice and study,
working within software Cycles can help continuously improve every team’s
results and efficiency.

Each release cycle is like a winemaker’s season. The outside world provides
the rain and sun of that year. The best possible wine is made using a process
of minimal mistakes. In software and in winemaking both, techniques exist to
optimize natural potential and to minimize accidental degradation.

Emphasizing architecture early, during the Design phase of development
pays dividends throughout each and every cycle. Adopting a cyclic
methodology allows engineers and architects to reassess design integrity,
with a relentless regularity.

The discipline of phase is essentially a way to help everyone get in sync.
Visibility as to why we offer new requirements only at the start of the
Cycle, and why we avoid distraction during other periods. This visibility
can immediately provide a noticeable reduction in frustration, and offers
improvement toward greater reliability in any construction.

We must learn to think of software construction not as a sprint to a
goalpost, but rather as a train rolling down the track. Software has motion,
it has momentum and direction.

Software in motion is a ceaseless act of balance.

F.I.D.E. LAWS OF CHESS 11.5

Cyclic disruption is like an athlete falling down in the 100 m dash. Quoting
the F.I.D.E. Laws of Chess 11.5: “It is forbidden to distract or annoy”—this rule of
can equally be applied to software engineers engaged in the Develop phase
of the software Cycle.

Much of software construction requires deep analytical thinking. Like
holding the pieces of a chessboard in your head, any distraction can disrupt.

10  |  Beyond Agile

In software there are times (typically during the development phase) when
even a momentary interruption of a developer’s work is like distracting a
chess player during Tournament.

What is certain is that at times during any Cycle simply asking a software
engineer to stop, stand up and answer a question can lead to a slow-down
like falling down in the heat of software construction. By taking note of this
fact as a guiding principle, we can reduce frustration and improve pace
simply by knowing when to get out of the way.

11

NEW YORK CITY
TAXI CAB DRIVERS

We can see the nature of software Cycles, but nature doesn’t dictate
software’s power and influence.

New York City Taxi Cab Drivers are some of the most professional on earth,
and if you’ve been to New York you know you’ll find some of the fastest.

THERE ARE SPEED LIMITS

Imagine two people take a cab ride from the same point in the city. One
person might get the best driver in all New York, while the other, the worst.
The best might deliver sooner and maybe save some fare. Maybe the worst
driver got stuck in traffic and you’d end up paying twice as much.

But it is not going to be one hundred times difference no matter which driver
you get. Taxi cabs just can’t go that fast, they are limited by the laws of physics.

Professional software engineers are not gated by the physical
universe while professional Taxi drivers are. Computer scientists and their

12  |  Beyond Agile

effectiveness are left unencumbered by the laws that govern the world in
which we live.

Consider that changes in context for software engineers can greatly affect
results. When a professional taxi driver switches passengers and route, there
is no delay or disorientation associated with that change. In software, this is
not the case.

In our post-industrial worldview, we’ve been trained to think: adding
more staff results in getting more done. We can readily see, each hour an
employee is working is an hour’s worth of production. We can see this if you
were doing just about anything from writing blog articles to assembling
widgets, even paving the sidewalk—more man-hours equate to more work
done, and why wouldn’t it?

WHAT IF WE COULD SEE SOFT WARE DESIGN?

In the real word, where construction is visible, there are clearly sensible ways
of making things. In our everyday experience we don’t see people building
staircases into walls, or doors leading to nowhere. In our everyday world, if
you think that on aggregate an hour worked is an hour of useful production,
you’d be right. But in the unseen world of software, you’d be wrong.

The fact that software’s design is invisible can serve to hide nonsensical
structures. In software, you cannot see the walls nor the stairs. On the other
hand, within the unseen universe of software there are no production
speed limits as there are for professional Taxi drivers. It is this vast range of
possibilities that makes software a challenge and a potentate.

The problem here just might be how to see what direction you are going
in the first place. Hours worked, even tasks completed are not indicators of
underlying software design or construction integrity, and therefore they are
not reliable standards of progress.

This implies that some measures that are plainly sensible from the real-
world perspective, are simply not valid for software construction.

This fact may seem counterintuitive, confusing or even frustrating.
The important thing to consider is that compared to real-world

professions such as Taxi drivers, the effectiveness of professional software
engineers has a far greater spectrum of performance.

Can this software phenomenon be harnessed? Can it be measured? Can it
even be understood?

The answer is Yes.

13

AN ICEBERG LAYS
90% UNSEEN

We see invisible software construction is unlike any real-world product.
Software is not limited by the laws of physics and this fact carries great
consequence for project managers.

In the real world, we know that 90% of an iceberg remains unseen and
underwater. This relationship is certain, it has been proven by science.

In software there is no relationship between the visible artifacts and the
true underlying complexity of that system. This fact may sound obvious but
it has profound implications for the ways we measure, manage and predict
the outcome of software construction.

Examine industry-wide results of software teams as it relates to schedule
and budget, and you’ll see dishearteningly inaccurate predictions.

But why? What is it that project managers are not seeing?

14  |  Beyond Agile

THE OTHER 90%

This unseen “other 90%” of software is nearly always far greater in complexity
compared to that which can be detected by the untrained eye.

This underwater portion of software goes far deeper down than the
predictably submerged part of an iceberg. If you ignore this submerged
part of software, then you are managing a tiny fraction of the overall
construction.

Consider common software measurement tools and you’ll see how
easy it is to forget about this “other 90%”. Software management tools and
associated methodologies are after the parts one could identify; the visible
artifacts, screens and wireframes—the features and functions that people
perceive and interact with.

Project management tools track what gets reported. This is only natural.
Project management tools are not so good at helping identify great software
design initiatives. These tools do not accredit design, lifecycle or architecture
and those are the utmost insights and contributions engineers make.

Unscientific reliance on these tools confuses activity with progress.
Construction based on resulting artifacts alone will cut across the grains
of software’s true, layered structure and avoid the far larger, unseen critical
imperative.

Design schemes are everywhere, inherent in the underlying system.
Visible or not, these designs are the true levers effecting software
construction. In the short and the long-term both, it is the design that is the
most authoritative element of progress and order.

Design is the most potently influential aspect of software there is.

THE SOFT WARE EQUILIBRIUM

Software is always in motion, it remains in a balanced equilibrium—building
up with new features and functions until it begins to collapse under its own
weight. We fight back against this collapse using design. Design helps us to
build to ever greater heights. This continuous balancing-act only ends when
a software product is end-of-life and no longer supported.

Observing this continuous balance, this equilibrium between rise and
collapse—we see clearly that architecture and design are what keep the
building rising. Like a geodesic dome, design drives the reliability, agility and
overall quality of software beyond simple function. Again, this is true in both
the short and long term.

An Iceberg Lays 90% Unseen  |  15

Unfortunately, design is often ignored in the quest to measure and pace
progress altogether. Design is paramount, and yet project management
tools have little or no facility to model and track what cannot be readily seen
or reported.

Software is art. Does this mean that some elements of software are such
artistic endeavors they are beyond the reach of reason or measure?

It certainly does not.

17

URGENT VS. IMPORTANT

We see that software design is critical, and visible artifacts of software do not
relate to complexity.

Software can be accurately assessed and managed even at the largest of
scales, but only if we divide between that which is most easily seen and that
which is truly significant in terms of design integrity.

Visible defects, artifacts of logical flaws boiling down to bug reports are
just an historic record of previous software management failure.

“�Program testing can be used to show
the presence of bugs, but never to show
their absence!”

— Edsger Dijkstra, Dutch Computer Scientist

Bug reports sometimes represent omissions or logical error, even
misunderstandings; but in the software development process, the most
important bug reports represent failure of design. Design flaws are what

18  |  Beyond Agile

should have been predicted and tested against, but somehow got ignored
until they were seen or sensed enough to report.

From this standpoint, the tracking of issue reporting and bug fixing
is actually a distraction from the true underlying mechanism that is
responsible for creating those flaws. Thus, the most important task during
software production is to continually address matters of design.

FIXING BUGS IS NOT PROGRESS

We can see that fixing bugs is not a valid measure of progress, it can be more
like a dog chasing its own tail. Even completing features is not a reliable
indicator, as we still ignore the unseen design complexity underneath.
So how do we evaluate that which cannot be seen?

Eisenhower Decision Matrix—Consider what must be done in
quadrant form.

In software, urgent is what people see, while what is important is good
design. Imagine all that goes into a project and consider what is visible and
what is important—we can easily see where the popular choices are to be
made.

Put in practical terms, to get a sense of how to evaluate what is most
Urgent vs. most Important we could examine all that went into a previously
completed release.

Consider all that each engineer and each team accomplished. All the
designs and features, all of the bug reports—all that was done. These tasks
and goals each can be divided into that which was most important vs. that
which was really just urgent by using a quadrant matrix sometimes referred
to as the “Eisenhower Decision Matrix”.

When we perform this activity for software construction, we readily see
why people avoid so much of what is important and focus on that which is
most urgent. Urgent matters are the things that outside stakeholders can
see, and take interest in.

Sadly, this aIso reveals why so many groups perform so very poorly. The
invisible nature of software means nobody ever gets fired for chasing bugs,
even if failure to emphasize design is the cause of those very same bugs.

By definition, bug chasing is reactive. In effect, it is the failure to
emphasize design or testing that perpetuates a habit responsible for
creating the very same bugs we reward engineers for fixing.

Urgent vs. Important  |  19

This happens. It is like making a hero of a firefighter who carries a book of
matches.

Can this trap be avoided? How can we emphasize that prevention is
always better than cure?

The solution is to divide and conquer.

REFAC TORING IS PART OF EVERYDAY LIFE

Refactoring is the process of restructuring existing code into a new
implementation, that performs the same result. By definition, refactoring
looks like a real waste of time. When done properly however, there is nothing
that could be further from the truth.

Recognizing that software is in a constant state of flux and that design
is the critical partner in creating a reliable structure, we have to accept that
refactoring code and correctly evaluating the lifecycle of code is a major part
of this everyday balancing act.

On the chart of Urgent vs. Important refactoring is clearly important,
but it also carries risk. One cannot replace the retaining wall of a reservoir’s
dam and leave this construction partway complete. Once you embark on
refactoring there is no turning back until the finish line has been crossed.

When does maintaining software outweigh its value, or when is progress
better served by accepting the risk of refactoring outdated or ineffective
designs?

How does one know when software needs refactoring if it can’t even be
seen?

Figure 2.  Visible vs. Important.
The Eisenhower Decision Matrix.

20  |  Beyond Agile

WHAT IS THAT SMELL?

It has been said that code can have a bit of a smell to it. This effect may have
first been noted by computer scientist Martin Fowler, a leading voice on
object-oriented software design and software construction.

“�a code smell is a surface indication
that usually corresponds to a deeper
problem in the system”

— Martin Fowler, British Computer Scientist

Code smell is just shorthand for the visible artifacts of hasty and
disordered construction. This “smell” manifests itself in the structure of the
code’s writing, the seeming clarity, uniformity and overall organization of
files and resources.

Code smell refers to the cracks that appear in the archways of the
Cathedral.

These cracks are indications of underlying stress on design. Cracks tend to
propagate and if left unchecked they result in catastrophic structural failure.

Refactoring takes many forms in many stages of the software lifecycle.
Once we accept the influential value of refactoring, it is not hard to identify
what must be refactored or what value that will provide.

If code has a bad smell or if the root cause of too many defect reports
relate to unwanted, degraded and smelly designs then engineers will already
be aware. Many times, these very elements will have been christened by the
team with some snarky nickname simply due to their notoriety.

You won’t have any troubling finding it, so why doesn’t it get done?
Refactoring is never Urgent, you could say it is a thankless task.

Furthermore, refactoring always carries some element of risk. It is not
figuring out what should be refactored but rather having the courage to
understand, evaluate and accept the risk involved.

Endless short term gains can be warmly received, but engaging in a
policy of deferred maintenance has consequences. It can result in avoiding
refactoring, which is plotting the very demise and collapse of your software
Cathedral.

Stay vigilant, and don’t bother second-guessing your expert designers
and engineers, they already know what’s causing the trouble.

Urgent vs. Important  |  21

NO BABY IN A MONTH

It has been rightly said one could lock nine highly collaborative women in
a room, but they cannot produce a baby in a month. Babies simply do not
divide into more manageable pieces.

Software cannot be arbitrarily split in any direction or be cut into any size
or shape. Software has a grain to it, it has layers—each reliant upon the ones
below.

From the Greek “atomos” or indivisible, an atom is the smallest particle
with sufficient structure to provide material meaning. Similarly, there is
a minimum viability that elements of software can be broken down into
before they no longer provide any material structure.

This indivisible, atomic nature of software is real. This fact means we
cannot neatly fit all software efforts into discreet segments of arbitrary size. It
is not possible to divide software indefinitely, or cleave in unreasoned order.

This has profound effect on the approaches used to accelerate schedule.
Some software work simply cannot be accelerated by division. Software

cannot be divided such that one engineer works on the “save” button while
another works on “cancel”.

If one believes that any software segment can be broken down into a
week-long checkpoint or divided between engineers for faster results—they
would unknowingly be decapitating critical underlying structures in so
doing.

In the real world, if we increase the number of workers on a construction
site, we should rightly expect improvement of progress. This simple division
of labor is a reality we see everywhere in our regular experience.

Since software cannot always be divided, it is implied that simply adding
engineers to a mature project can sometimes, if not often times, actually
impede progress.

Make no mistake about it. The implications of this simple fact of atomic
division is the single most commonly and tragically confused reality of the
software world.

23

DESIGN MATTERS

We know software design is not visible. This makes some of the most
important work to be done, far-less attractive for us to attend. Even so, how
do we separate out that which is truly important?

For the purposes of this text, the word “Architectural” refers to
bugs or features where stability of design is critical, and complexity of
function merits something of a blueprint. This word refers to complicated
things—as opposed to simple software features or logical flaws and trivial
misinterpretations.

Every project has what we might call “Architectural Bug-Makers” or
flawed designs that are identified as the root cause behind different groups
of defects. Architectural Bug-Makers are a drag on maintenance and an
impediment to progress in ways that could have been avoided. These are
software structures that just seem to fail their purpose, or fall short of the
quality of design that is required of them.

Every project has what we might call “Architectural Features” or
requirements of the system that represent new structures and functionality

24  |  Beyond Agile

necessitating significant design. These features are complex enough to not
only require extended development, but their implementation governs
potential reliability and agility of the resulting construct.

BUG-FIX APPROACHES CAUSE SOFT WARE ENROPY

By virtue of its nature, ad-hoc bug fixing results in a patchwork effect
that degrades design into a more disordered state. Patchwork-style repair
punches through the layers of software foundations, causing cracks and
leaving behind some amount of distortion in their wake.

In this way, a culture rewarding unordered bug-fixing tactics actually
results in more defects being produced. Furthermore, this culture
contributes to software entropy which is the major force and key factor
behind shortness of lifecycle. This duration of lifecycle is the currency
value of your software assets and most critically, all of this lifecycle damage
remains completely unseen to the untrained eye.

“�Most software today is very much like an
Egyptian pyramid with millions of bricks
piled on top of each other, with no structural
integrity, but just done by brute force and
thousands of slaves.”

—Alan Kay, American Computer Scientist

Simply by identifying the Architectural features which require design, and
separating out the Architectural bugs that are produced by flaws of design,
you have immediately helped every engineer on each and every team.

Architecture has even greater meaning in the invisible world of software
than it does in the everyday world in which we live.

Consider that the “Arch” in Architecture is the difference between a
Pyramid and a Cathedral. The Cathedral is made using a million times less
stone and the difference is not materials, it is knowledge.

Unlike the real world that is limited by the laws of physics, Architecture
and software invention can change the entire landscape of construction and
profoundly alter outcome.

Design Matters  |  25

If your process only measures the end resulting bug report, you cannot
see the architectural causes behind flaws, and thus you cannot accurately
measure the quality of underlying design.

EVALUATING QUALIT Y DOES NOT
REQUIRE READING CODE

Project managers should be experts in computer programming no doubt.
In the world of Beyond Agile, project managers can no longer be experts

in all languages, technologies and techniques used to build a single product.
Project managers are additionally burdened with the broader responsibility
of schedules and communications and this makes specific personal
engineering expertise less and less applicable.

The seemingly subjective art of software construction can be measured
and evaluated for purposes of quality using science. We succeed at this
evaluation by organizing and examining properly categorized bug reports,
while keeping a finger on the pulse of the software development Cycle.

We must always begin with the design in mind.

27

BALANCE & SERIALIZE

Schedules are critical to software planning at any size or stage.
As teams grow and multiple disciplines emerge—schedules become the

key to inter-departmental organization and reliably joining technical efforts
into the broader release plan.

There is one overarching strategy behind accurate schedules and release
projections in Beyond Agile. We refer to this process and strategy as “balance
and serialize”.

Although software is invisible, construction schedule is governed by a
visibly identifiable phase.

In other words, phases can be identified by taking note of the types of
activities in which each team is currently engaged, and we can use this
information to know where in the development Cycle any team or project
truly is.

Because Cycles repeat phases in order, we can determine the boundaries
of our schedule as surely as predicting spring follows winter.

28  |  Beyond Agile

BALANCE FIRST

A well-designed release plan focuses on only a handful of major architectural
issues for any given team or group. These are either previously identified
bug-makers or creations of new features that require architectural
consideration.

It is not practical to tackle too much design for any given release, and thus
there is always a balance between quality and progress which is itself, bound
by schedule and resource.

This is balance.

Any product already in use, will have a list of issues reported from
the production system. These bugs must also be separated into major
Architectural elements or simple logical flaws and misunderstandings. This
task is best performed by the leading software architect of that system.

Within the methodology of Beyond Agile, even a minor release can pile
on many simple logical fixes, however major Architectural elements are
separated at birth and given a different life.

TICKET TO DEFER

Logical flaws and bugs being tracked must be ordered with an eye to that
which we might call deferment.

The choice to defer bug fixes, is critical to efficiency.

Figure 3.  Balance.
Compare and estimate
quickly and accurately.

Balance & Serialize  |  29

Consider that we’ve noted the impact of design and that we can only
address a few Architectural issues in any given Cycle. This knowledge greatly
impacts the order in which bugs are most effectively scheduled.

If a future release is intended to address underlying design problems in
a “bug-maker” element of the software, we may well fix those issues all at
once.

Bugs having a root cause relating to Architectural design should be part
of that designer’s scope of work when that scheduled time arrives.

Handily, each group of related Architectural bug reports becomes a set of
proofs that provide a useful unit-test for that one software element.

It is only sensible to line up bug reports in ways that are most efficient.
By quickly identifying Architectural elements, we can easily see the most
effective ordering of fixes. This practice is at the very foundation of highly
effective scheduling promoted in Beyond Agile.

Balancing any release or milestone is as simple as asking “how different is
this phase from the previous build? Is there a lot more to design? Is this release
going to need more debugging or less?”—If we divide and compare by phase,
we can estimate and serialize quickly and accurately.

Relying upon this practice of “balance and serialize”, the schedule can
contract and expand with internal or external pressures. We can accordion
the length of all phases at once and without disrupting the integrity of the
Cycle as a whole.

Balance is by design.

Figure 4.  Serialize.
Visualize the balanced
values as a serial schedule
that can contract and
expand without loss of
integrity of phase.

31

ARE WE ON TIME YET?

Software design has unlimited potential to affect results. We recognize that
software design is not visible, and further that software does not adhere to
real world physical limits and measures.

Are we on time? How could anybody say firsthand, if software can’t even
be seen?

The measures and methodology revealing this answer are not as
complicated as they are misunderstood.

There are ways to abstract the essence of expert software process.
Exploiting this does not require a project manager to be an expert in any
specific computer language, nor does it require them to be the architect and
designer.

In other words, it is possible to put a finger on the pulse of software
construction from outside of the box.

It is possible to adopt a mechanical methodology, and by mechanical we
mean an unthinking process—one that axiomatically reveals the invisible
nature of software construction regardless of computer languages or
specific team tactics.

32  |  Beyond Agile

THE CURRENT PHASE IS BELLWETHER

Each phase of the software Cycle is identifiable by taking note of the
activities in which each team is engaged. In this way, it becomes possible to
determine which phase any given project truly is. This fact is what indicates
the boundaries of the schedule’s accuracy.

There is a rule of thumb in software scheduling implying that when
software feels about 80% complete then you are likely to be at 50% of time,
or halfway through your schedule.

Using this rule of thumb as a checkpoint, along with a diligent watch on
critical design-flaw related bugs we can reliably assess on-time status at a
distance.

Let’s walk through this process in detail.

A SIMPLE RULE OF THUMB

One interested party or another may inquire as to whether a release remains
on-schedule, just about every day. However, there are only a few select
moments in the schedule for which this response ever truly changes. There
are even fewer leading-indicators used to identify the responsible software
signposts that dictate any change in said response.

“�If debugging is the process of removing
software bugs, then programming must
be the process of putting them in.”

— Edsger Dijkstra, Dutch Computer Scientist

Architectural flaws are impactful. Architectural flaws often form the single
point of failure behind any number of bug reports. These bugs are the
critical issues affecting the integrity of release.

By tackling Architectural design issues early in the Cycle, we benefit from
a Debug phase focused on logical flaws and not the moving targets of
incomplete or unstable design foundations.

Consider this rule of thumb we’ve cited, when trying to ascertain
schedule. It is common to feel about “80% complete” at or around the
halfway point of the Cycle. Now compare this sense of progress, with the
detection of critical defects relating to design, still failing test.

Are We on Time Yet?  |  33

The debug phase is not truly the current phase in earnest, at least not
until architectural level design flaws are proven reliable.

If a team is attempting to repair something already defined as being
complex enough to require design, something Architectural —then you
have not truly phased into Debug activities. You are behind in schedule and
this is predictable at the halfway point in schedule.

As we’ve noted, one cannot leave a reservoir’s retaining wall incomplete.
This remaining critical flaw must pass test before we are able to change
phase and move on. Although, some amount of time can be made up of
course, the schedule will begin to push out with each passing day.

Importantly, while architectural design flaws persist, one cannot be
certain in any reassessment or recalculation of schedule. This fact is due to
there being no way to accurately anticipate when architectural flaws will be
re-designed such that the result will be proven reliable in testing. Passing
these last critical tests is now the goal engineers are most focused upon, and
that goal being achieved, will be the next time any schedule response can
be accurately recalculated.

Conversely, once Architectural issues are proven reliable the release is
considered “downhill” after that 50% halfway schedule mark. This is because
even a large order of logical flaws could be either repaired or deferred
without disruption of phase or loss of release integrity. This would be the first
time a project manager could predict with confidence that the schedule will
be met.

Figure 5.  Recalculate.
Schedules can be
estimated as reliably
as predicting sunrise.

34  |  Beyond Agile

To sum up:

1.	 there are pre-defined milestones set into each Cycle

2.	 these milestones dictate when estimates can and should be made

3.	 there are times when we cannot accurately update schedule

4.	 there are times we must update schedule because milestones were met

Materially, one does not have to read code to accurately schedule and
predict software construction. Having a finger on the pulse of construction
while adopting a process that identifies Architectural elements, is the key to
highly reliable schedule management.

There are only a handful of moments this response is ever even in
question.

Adopting this method makes accuracy in responding to schedule as calmly
dependable as predicting the rising sun.

35

TESTING

Testing is a technical vocation, performed by professional computer
scientists throughout the software lifecycle.

Testing is assurance. It is the National Transportation Safety Board (NTSB)
of software construction. It is there to prevent accidents, and when they
happen to determine probable causes and formulate carefully crafted safety
recommendations that are based on science.

Testing, by using objective measures and assessments, assures that
software successfully conforms to its requirements. Testing provides
a bedrock of assurance and reliability which are the underpinnings of
responsive and agile construction.

Testing can also grind software construction to a halt.
The potential to shut down progress is real. Testing has an extremely

broad set of professional techniques, each evolving within dramatically
different environments and sharing only distantly related evolutionary
pressures and influences. This breadth of technique is testament to the
incredible spectrum of software application, and the maturity of modern
software construction practice.

36  |  Beyond Agile

Put simply, there are many more ways to apply the wrong technique than
there are ways to correctly assemble a viable Testing strategy.

HOW ABOUT SENSIBLE TESTING?

In the view of Beyond Agile, Testing is a profession, a vocation of computer
science.

We acknowledge the modern multi-disciplinary world of today requires
a set of tools whose details lay outside the scope of this text. This material
attempts to offer from the project manager’s perspective—a set of ways and
means to evaluate and optimize testing with economic precision.

If your plan is to reduce bugs by increasing the number of testers, you
may want to think again.

There are ways in which science can evaluate the efficacy of Testing.
Visibility can be given to the results and merits of Testing, but this is only
useful if we educate ourselves on the deeper purpose.

Many popular project management philosophies revolve around
suggesting dedicated testing staff or perhaps a certain ratio of testers to
engineers. Some emphasize continuous proofs to be coded alongside
business logic and still others will propose regression, integration or unit-test
approaches.

These philosophies are each in response to a changing landscape of
problems arising with new software construction strategies and evolving
computer languages for more than fifty years.

In the mobile-centric world of today, full of many different stakeholders,
it is not surprising that there are hordes of divergent testing interests. Some
have reliability concerns and may want unit, stress or performance testing,
while interface related responsibilities focus on results from A/B release
reports or usability and acceptance.

How could applying any particular technique always be sensible?

TESTING IS OCCUPATIONAL SAFET Y

Consider broadly the object of Testing. Suitable testing is coming from
engineers, not at them. Testing tools and techniques exist to keep engineers
performing software construction at the height of efficiency and with the
greatest effect.

Testing  |  37

This may sound obvious, but even a cursory evaluation of most Testing
processes reveals over or under testing, and perhaps even more often an
ineffective or misconstrued Testing process that slows production without
improving quality at all.

Bugs in production systems represent failures of Testing, not to be
confused with the need for more testing. Testing is part of any practice
intended to avoid bugs, it is a powerful weapon every engineer uses, but
this does not make it causally connected to defect rates.

Performance testing, A/B testing, exploratory and scripted, regression
or human interface testing—quite literally all testing techniques are
fundamentally occupational safety.

Testing is what allows software architects to confront complexity with a
clarity and composure that comes only from a sense of security. Testing is
the NTSB of software construction, providing the guidance and support to
operate free from anxiety—but safety is not without cost.

DON’ T GROUND ALL AIRPLANES

Think of Testing as the underwriter’s insurance of your project. Underwriting
is the business of determining risk potential and quantifying the results of
safety procedures.

If the one-and-only concern of the NTSB were safety, the investigative
agency would simply ground all airplanes and close all roads.

Testing must consider the economy in which it operates.
We see that a proper safety net enables software construction to be faster,

safer and more reliable. But this safety net can impede progress. Uneducated
and unscientific testing is a recipe for creating friction and economic
imbalance.

Proper testing is achieved by appropriately allocating resources to ensure
engineers perform their mission in the most cost-effective and friction-free
manner possible.

In the view of Beyond Agile, it is certainly not the quantity of the testing
you engage in that provides safety, it is the process of learning how
determine probable cause and finding its most fitting solution.

Testing is safety, sensibly.

39

ANATOMY OF
A RELEASE PLAN

Software is planning, and with Beyond Agile we attempt to reveal the true
value and nature of expert planning.

If you have a release, you have a plan.
Communication regarding this plan can be condensed into its most

rudimentary elements. These elements, if made visible and accountable in
any form or fashion, can help the project manager optimize individual, team
and inter-departmental efficiencies.

Communication is paramount. It is communication that gives others a
framework to engage effectively. For instance, visibility of schedule makes
it clear to see that requirements are best provided early in the Cycle, during
design. Those needing to review a near-final release can see when along
the way this will happen. Each individual engineer, tester or stakeholder can
distinguish their own part within the process, and plan accordingly.

40  |  Beyond Agile

THE SEVEN RUDIMENTARY
ELEMENTS OF COMMUNICATION

Beyond Agile highlights the essential activities performed by the most
effective teams. These groups all share certain practices of communication
and documentation; a continuous process of providing visibility and
dissemination. This communication is the very essence of professional
software methodology.

Beyond Agile has condensed essential communication to seven
rudimentary elements. These seven elements are common to any software
construction playbook.

These seven elements are as follows:

1.	 a central authority to govern approach, a style guide

2.	 each Cycle has a release plan, give it a memorable name

3.	 balance and serialize—a strategy of schedule ownership and visibility

4.	 release notes discuss what changed from the original plan

5.	 candidate release docket lists when and why release candidates
were rejected

6.	 post-mortem outlines what went well, and what can be improved

7.	 a diary of dated log entries or lineage-report contains historic events
of merit

Let us review each of these elements in greater detail.

Style guide: even the smallest project group needs to agree upon, and
set forth a style guide to establish a shared project-level uniformity. This
is almost like a mission statement for coding practice. This guide is always
work in progress and typically begins the very first time there are multiple
disciplines and engineers working on the same project.

Release plan: is predicated on a memorable and suggestive title or release
name, along with a simplified set of instructions describing the release. A well-
balanced release has only one or two major Architectural features or fixes, plus
a reasonable amount of logical flaws for repair, and of course some amount
of time to accomplish it. A release plan lists major visible features for those
outside the group and provides some “rules of engagement” directing team
members to work within specified bounds (typically limits on technologies
and approaches or guidance regarding architecture and design).

Anatomy of a Release Plan  |  41

Balance and serialize: is a process that serves as a framework and guide
to help estimate and visualize time needed for each phase in the software
development Cycle. This is a collaborative effort within the team and
requires input, advice and shared consent among members. Balance and
serialize helps visualize the structure of each Cycle and get everyone to
better understand their place within the goals of that schedule. This can
take the formality of a Gantt chart or a casual whiteboard drawing of lines
and dates. The purpose is to ‘’see’’ the shared agreement of values, and the
estimates uniting all efforts.

Release notes: created and catalogued for each release. This document
outlines major feature elements and provides a detailed list of items
differing from their stated or implied intent. These technical details help
communicate and catalog how projections in the plan were later realized.

Release docket: when the time comes to produce a final production
release, a release candidate makes its way through various stakeholders of
the organization who typically offer a “go, no go” countdown-style response.
We record the dates and reasons for any rejections in a release docket. This
docket provides invaluable historic data that inform future cycles, and it
provides critical visibility. It shows patterns of rejection along with any flaws
in design or process that are responsible for those patterns.

Post-mortem: after a release has hit the shelves and is in real world use,
it becomes time to regroup and consider what could have been done
better. We refer to this as a post-mortem of each release or Cycle, and it is
a major chapter of the playbook of continuous improvement for software
construction.

Lineage-report: logging significant internal and external events in a
software diary or lineage-report can give an overview of your entire
software lifecycle. This reference increases in value the longer and more
visibly it is maintained.

For each of these seven elements of communication, it is the visibility and
authenticity that make them invaluable. Visibility is achieved by regularly
updating a standard set of documents people can see and use. Authenticity
is achieved with the shared ownership and input from each team and each
individual, and by precisely informing stakeholders at each step along the
process.

Software is a plan, make it visible.

43

“SOFTWARE CAPITAL”
THE PURSUIT OF QUALITY

We see how cyclic scheduling fosters team spirit and shared responsibility.
We appreciate the importance of design, documentation and visibility. We
understand how sensible Testing is a bargain when economically balanced.
This leaves one remaining matter: Software Quality.

But what exactly is Software Quality?
“Software Capital” is a term first coined by American Computer Scientist,

Dean Zarras who cited software’s astronomical capacity to provide broadly
useful foundations. “The bottom line with Software Capital is better business
solutions, delivered faster”—states Zarras, in his foresightful 1996 paper,
republished by Hacker Noon, at https://hackernoon.com/software-capital-
achievement-and-leverage-2c30f6f01ed9.

Quality can be viewed as available capital, an absence of bugs, or lack of
technical debt perhaps, but this is not the whole story.

Quality is often seen, incorrectly, as a luxury. To some, Quality is what you
sacrifice for the benefit of greater progress at lower cost.

The reality is far more subtle.

44  |  Beyond Agile

The most successful software development groups passionately rely on
an organizational commitment to Quality. It is Quality which these groups
use to precisely and accurately accelerate development, mature feature
production and improve overall project performance. These groups take an
interest in “Software Capital” and they expend resources in so doing.

How do these groups expend greater resource, while also expecting to
outperform?

Let’s take a step back and consider the very nature of Software Quality.
At its core, Quality is a pursuit. Quality is both an activity and an investment.

Quality is the will behind extending ourselves and our effort.
Quality is the mortar holding the bricks of our Cathedral, the fabric that

binds it all together.
It is this pursuit of Quality that provides the very energy we sense within

Cycles. It is this flow of energy we tap into for effective turn of phase.
Without this pursuit, your software construction engine runs dry.

Quality is a software concept which is embodied within the physical
world. The building up of software assets, tackling of software deficit even
agility itself —these are all results of Quality.

Excellent software developers must work to be architecturally mindful
and efficiently detect, isolate, and resolve structural deficiencies before they
manifest as visible artifacts.

It is this forward moving effort of design and enquiry, that requires fuel to
persist.

The reasons behind this effect are largely self-evident. Like salt in soup,
problems become more intractable as the lifecycle of the codebase
matures. This results in ever greater effort being required for progress to be
maintained.

“�If we want to be serious about quality, it is time
to get tired of finding bugs and start preventing
their happening in the first place.”

— Alan Page, American Computer Scientist

Unlike software itself, Quality is part of the natural energy system we, as
human beings take part in. Quality is the force we sense pushing us through
the change in phase.

“Software Capital” The Pursuit of Quality  |  45

In terms of Software Capital, it turns out this relentless pursuit of Quality is
what really provides the inertia we’re looking for. In a sense the best software
is attainable only alongside the pursuit of Quality, and thus it is Quality in
which we are investing our effort.

FORCES IN MOTION

External pressures from real-world requirements are what drive software
construction. The call of urgency and the pressure of schedule are held in
place by the power of Quality. This is the balanced equilibrium that we sense
when Cycles are at their height of efficiency.

During software construction these three critical forces: schedule, urgency
and quality mix together and combine. It is the balance between these
forces which sets speed and trajectory. This mixture provides the fuel we use
to advance our position and offers us the control we exert to navigate.

These laws regarding the software universe and its relationship to the
real world, are the very heart and soul of software construction. Quality is
both the lever, and the valve we use to direct construction with precision,
symmetry and stability.

Lastly, Quality is something that everyday users can truly sense and
appreciate. Engineers realize the production benefits of Quality, and
ultimately your commercial stakeholders will appreciate the benefits as well.

“Quality. Up yours.”

47

WHAT GOES AROUND,
COMES AROUND

The iterative process is circular in nature, each phase receives input from,
and provides output to, the following phase and ultimately carries into
the next cycle. At the highest level, this circularity ensures relentless
reassessment of structure. Teams act to advance Quality at each phase
because every engineer has stake in the target goal, and the schedule they
must work within to achieve it.

Above all else, because Cycles repeat and phases begin anew—all that
was deferred, all that could be improved and all that was learned, can now
be used to inform the next game, the next cycle, the next release.

When you think of cyclic software construction, you don’t envision
a sprint but rather see an opportunity for tapping into a natural flow of
continuous energy. It is a way to recognize and appreciate the seasons
happening all around you.

Take advantage of Cycles to foster deep acceptance of schedule and
shared purpose. Promote the values that provide a guiding self-governance
by means of Quality and sensible safety. It is this commitment to Quality that

48  |  Beyond Agile

inspires the best effort from even the most diverse set of computer science
professionals.

Just as in professional sports, software excellence is achieved through
focused discipline applied across seasons, practicing maneuvers over and
over again. After each software construction Cycle, we can review that
release in post-mortem. With each turn of phase, we can improve our
collective marching pace.

Professionals refer to their playbook. Coaches adopt a repeating process
of training and a discipline to continuously compare and improve. Beyond
Agile defines the professional playbook and let’s everyone benefit from this
expert knowledge.

Like professional sports leaders, software project managers must improve
continuously and plan relentlessly in order to remain at the top of their game.

OBSERVANCE OF CYCLES
HAS ADDITIONAL BENEFIT

Balancing phases fosters a deep shared sense of responsibility within each
team. The process of balancing is a collaborative act, requiring unanimous
support and participation.

In this way, Cycle based goals and schedules are mutually understood
as being valid and this authentic worthiness produces a natural self-
governance in behavior. This sense of responsibility helps individuals
recognize when they must be the one to step up, and without the need
to directly manage or manipulate. Furthermore, this process creates
an inspiring sense of ownership and a culture of sharing credit for
accomplishment within every workgroup.

Cycles provide visibility into inter-team dependencies, providing greater
accuracy in schedule overall. Cycles help engineers know when to consider
design, when to halt development and emphasize testing. Cycles offer a
framework for all individuals to know where they are in the bigger picture,
and how to responsibly consider their own time and schedule within that
framework.

Perhaps most importantly: identifying software Cycles helps everyone
recognize and reward engineers for great design. Simply by adopting a
practice of cyclical observance, teams can better highlight the design goals
that allow the most effective teams to perform at their greatest heights.

We must go, Beyond Agile.

49

GLOSSARY

Agile. A commonly cited process that provides a popular structure for
team activities. For the purposes of this material, the term Agile represents
the status quo of modern tools and trends associated with software
management as a whole.

App Store. The App Store drives the modern software economy. The web
freely transfers data across the internet, while the App Store protects artists’s
digital rights online. These two software inventions are the pillars upon
which the modern world of mobile computing stands.

Architectural. A term encapsulating software design and the intentions
of the designer. In Beyond Agile, we submit that an Architectural element is
defined as any new feature or any existing structure where simple logic gives
way to a broader construction blueprint.

Beyond Agile. In the complicated world of mobile devices, scripted web
programming and traditional server systems all working together—being
‘Agile’ is no longer enough. Beyond Agile is expert software knowledge
refined into useful traffic signals and bellwether indicators revealing the true
underlying nature of software construction.

Bit. A binary digit of information. The binary digit has only two states and
the contraction of binary digit is Bit. A Bit is the smallest readable state
with sufficient discrimination to convey anything at all, and is the basis of
computer information.

Byte. A word or phrase of Bits ordered to make up a distinct segment of
meaningful information. Typically 8-Bits make a single Binary-Term, or Byte of
information.

Cascade. A word referring to the earliest software management practice,
evolving from large pools of human computers. This rigorous process was
characterized by mission-critical, and largely static system requirements
to be crafted using only low-level computer languages. Cascade predates
object-oriented theory in the enterprise.

50  |  Glossary

Code. The instructions in a computer program. It is code that makes
computer hardware perform arbitrary tasks without requirement of change
in the material structure of the computing device.

Computer. Computer was a job title. People who calculate financial
payments, or missile trajectories or any other form of mathematical
computation. Since the 1950’s or so, the term Computer refers to a non-
thinking mechanical process that orders calculations on binary information
stored in digital memory.

Cycle. A Cycle is any series of events that are regularly repeated in order. The
Software Cycle is the heartbeat of software construction and is a natural,
endemic part of that construction.

Extreme Programming. Extreme is a software development methodology
intended to improve quality and responsiveness. Extreme evolved as a way
to react to a world where requirements were no longer static, they were
rapidly changing.

Internet. Different than the web, the internet is the underlying information
protocol shared by early computer networks, thus unifying the world of
communication between computers.

Phase. A distinct period or stage in any process. Software construction
is cyclical in nature and the phases of development repeat predictably in
ordered fashion.

Project Manager. A misnomer. We don’t manage software but rather
manage to take note of expert behaviors and leverage the energy and
education afforded by repetition.

Software. The programatic instructions performed by a computing device
upon information stored in memory. The first software was separated from
the underlying hardware in research conducted by Ada Lovelace in the
1840’s but the term “Software” was coined by John Tukey in the 1950s.

World Wide Web. Different than the internet, the web is built on top
of internet protocol and provides the leading mechanism for freely
transporting computer information.

51

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support and contributions to the
Beyond Agile movement and all its independent contributors, mentors and
thought leaders including the following:

Aaron Hillegass has spent his career refining the art of object oriented
design and software theory. Aaron runs the Big Nerd Ranch providing
enterprise level software training to the world’s most advanced engineering
groups. Established in 2001, Big Nerd Ranch specializes in expert instruction
from the brightest developers and designers in the industry. Aaron got his
start mastering NeXT computers in the early 1990’s.

Andrew Stone “Jesse and Alex were there at the beginning of object
oriented programming on the NeXT, which enabled collaborative software
efforts to succeed. Learn from those who have managed teams and
delivered software, baptized by fire!”—Andrew Stone. Andy famously
created the Twittelator iOS app selling millions in the early iPhone AppStore.
Andy has the distinction of being the first to distribute his wares on the first
ever AppStore, The Electronic AppWrapper in the early 1990’s.

In conclusion, the authors would like to humbly acknowledge the
existence of:

Mom
The Flying Spaghetti Monster
Toilet Paper
C

8
H

10
N

4
O

2

52

ABOUT THE AUTHORS

Jesse Tayler is a recognized expert in software systems. Jesse is uniquely
suited for the complexities of today’s mobile-oriented software construction.
Jesse’s hands-on leadership has kept him at the heart of software invention
for over 30 years. Jesse creates responsible engineering cultures from the
top. His personal faculties as a software engineer allowed him to excel as
lead designer and central architect of validated financial systems, clinical and
regulatory affairs systems requiring the highest degree of proficiency. Today,
Jesse technology venture Object Enterprises Incorporated, builds mobile
and server-side applications while providing training and leadership skills-
enhancement for some of the largest advertising and publishing brands.
Jesse still creates novel software inventions and advises young startups on
business and technology.

Alex Cone is an entrepreneur computer geek with a penchant for starting
software companies. Before he graduated from college he was writing
software for NASA that helped build the Space Shuttle, then spent more
than a decade building trading and risk management systems at top Wall
Street firms. His latest enterprise consulting firm CodeFab was founded in
1997 with the intention of using better process to improve the success of
mission critical software development projects. As CodeFab’s Alpha Geek
he was an early advocate for & adaptor of “Extreme Programming” (an early
version of Agile Development) and continued to use agile techniques to
deliver success in large scale mission critical software development projects.
A lead architect for mobile development at B&N, HBO and IBM he has built
an impressive track record for delivering cutting edge mobile applications
and large interactive systems.

