

Achieve
excellence

Beyond Agile
By Jesse Tayler with Alex Cone

Master software architect, startup
executive & App Store inventor.

Super-Geek, master-level Wall-St
engineer & founder of CodeFab.

Process Follows Purpose

Process Follows Purpose

Cascade
Slow Reliable Process

Based On Pools Of
Human Computers
Crunching Numbers

Extreme
Small Teams, Pair

Programming
Emphasizes Design/

Invention

Agile
Continuous

Improvement, Brittle
Scripting Languages &

Fast Turnaround

Beyond Agile
Multi-Disciplines, Server

APIs, Adaptive
Interfaces & Mobile

Clients

–Steve Jobs, American Entrepreneur

“Design is a funny word. Some people think design means how it
looks. But of course, if you dig deeper, it's really how it works.”

Bowling Has A Season
Why Would They Do That?

–Beyond Agile

“The National Bowling League recognizes what many software
project managers do not. It is the schedule itself, the cycle of

seasons that provides the scaffolding for order, and the assurance
of predictability”

Deploy

Debug Develop

Design

Phases

Winter

Fall Summer

Spring

Seasons

Seasons…
natural changes in behavior and activities as we move through cycles

Phases
๏ Design Freeform ideas, sketches and research; attack hard or unknown

issues. This is typically the most collaborative phase.

๏ Develop Focus on the meat of development, this phase is typically the
longest and least directed phase.

๏ Debug Cut-off unfinished work & prepare for stable release. Hit lists of bugs,
even named bugs if they are tenacious. This phase is often the most directed
of any phase.

๏ Deploy Procedures: Controls & procedures. Follow the book. Countdowns,
checkoff-lists and procedural guides predetermined for every step. Considered
least collaborative because of studied and predicted situation handling.

Least Collaborative

Most Directed Least Directed

Most Collaborative

Phases

Procedures

Discipline Focus

Ideas

Phases

Cycles Repeat
relentless reassessment

–F.I.D.E. Laws of Chess 11.5

“It is forbidden to distract or annoy”

Bowling Has A Season

• Software has naturally occurring seasons that usher observable changes
in behavior and activity

• Visibility into phases helps others know when to submit requirements, or
when to review a nearly completed release

• Cycles provide for relentless reassessment of design and process

New York City Taxi Cab Drivers
Software Is Unencumbered By The Laws Of Physics

Taxis Have Limits
Imagine two people take a cab ride from the same point in the city…

What If We Could
See Software

Design?
In the real world, we don’t see
people building staircases into

walls, or doors leading to
nowhere

–Beyond Agile

“some measures that are plainly sensible from the real-world
perspective, are simply not valid for software construction.”

Compared to real-world professions such as Taxi
drivers, the effectiveness of software engineers

has a far greater spectrum of performance.

New York City Taxi Cab Drivers

• In the real word, where construction is visible, there are clearly sensible
ways of making things

• In software, design and invention are the true levers affecting progress,
they can change the entire construction landscape

• Hours worked, even tasks completed are not indicators of underlying
software design and thus prove to be unreliable standards of progress

An Iceberg Lays 90% Unseen
This Relationship Has Been Proven By Science

–Beyond Agile

“In software there is no relationship between the visible artifacts and
the true underlying complexity of that system…”

–Beyond Agile

“Software is always in motion, it remains in a balanced equilibrium —
building up with new features and functions until it begins to collapse

under its own weight. We fight back against this collapse using
design.”

The unseen ‘other
90%’ goes deep

Project Management tools track
things people can perceive, and

interact with

An Iceberg Lays 90% Unseen

• Project management tools track what gets reported

• Unscientific interpretation and over-reliance can confuse activity with
progress

• Design is the true lever effecting software construction and can change
the entire construction landscape

Urgent vs. Important
Fixing Bugs Is Not Progress

Not Visible

Important

Visible
Important

Not Visible

Not Important

Visible
Not Important

More Visible
M

or
e

Im
po

rta
nt

Urgent vs. Important

–Edsger Dijkstra, Dutch Computer Scientist

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

“Architectural”
Bugs or Features where

stability of design is critical, and
complexity of function merits

something of a blueprint

Every project has what we might call “Architectural
Features” or complex endeavors. Every project has
what we might call “Architectural Bug-Makers” or

delinquent code.

–Martin Fowler, British Computer Scientist

“a code smell is a surface indication that usually corresponds to a
deeper problem in the system”

Refactoring Is Part
of Everyday Life
One cannot replace the

retaining-wall of a reservoir and
leave it partway complete

Urgent vs. Important

• In software; urgent is what people see and important is good design

• Code smell is useful, but the team has already given a snarky nickname to
the culprits of code that are delinquent

• It takes science to assess the value of refactoring

Design Matters
Bug-Fix Approaches Cause Software Entropy

–Alan Kay, American Computer Scientist

“Most software today is very much like an Egyptian pyramid with
millions of bricks piled on top of each other, with no structural

integrity, but just done by brute force and thousands of slaves.”

Bug-Fix Approaches
Cause Software

Entropy
Ad-hoc bug fixing results in a

patchwork effect that degrades
design layers into a more

disordered state

Design Matters

• Cathedrals use a million times less stone than a Pyramid —the difference
is not material, it is knowledge

• Architecture has even greater meaning in software than it does in the
everyday world

• Unordered bug fixing misses an opportunity to assess the value of
refactoring faulty design

Balance & Serialize
Balance First

–Beyond Agile

“Because Cycles repeat phases in order, we can determine the
boundaries of our schedule as surely as predicting spring follows

winter.”

"Lightning" Release

0 Days 3 Days 6 Days 8 Days 11 Days 14 Days

Design Develop Debug Deploy

Balance

Serialize

"Lightning" Release

0 Days 8 Days 16 Days 24 Days 32 Days 40 Days

Design Develop Debug Deploy

Balance & Serialize

• Start with a name, theme and handful of architectural elements, adjust
estimates with each team

• Phases repeat in order, we can determine the boundaries of our schedule
as surely as predicting spring follows winter

• Natural self-governance is formed by unanimous support of worthy and
authentic schedules

Are We On-Time Yet?
The Current Phase Is Bellwether

–Beyond Agile

“Are we on time? How could anybody say firsthand, if software can’t
even be seen?”

"Lightning" Release

0 Days 8 Days 16 Days 24 Days 32 Days 40 Days

Design Develop Debug Deploy

50% Mark
Day 17

Serialize

"Lightning" Release

0 Days 8 Days 16 Days 24 Days 32 Days 40 Days

Design Develop Debug Deploy

50% Mark
Day 17

Actual Critical
Test Mark
Day 22

+5 Days

Recalculated
Release

Day 39 (+5)

Serialize

Sum It Up
1.There are pre-defined milestones set into each
Cycle

2.These milestones dictate when estimates can
and should be made

3.There are times when we cannot accurately
update schedule

4.There are times we must update schedule
because milestones were met

Are We on Time Yet?

• Each phase of the software Cycle is identifiable by taking note of the
activities in which each team is engaged

• Project Managers can reliably assess on-time status at a distance, simply
by identifying schedule midpoint and reviewing critical tests

• There are only a few times at which any schedule estimates change

Testing
Occupational Safety

–Edsger Dijkstra, Dutch Computer Scientist

“If debugging is the process of removing software bugs, then
programming must be the process of putting them in.”

Underwriter’s
Insurance

quantify and evaluate safety
procedure and make

recommendation based on
science

–Beyond Agile

“If the one-and-only concern of the NTSB were safety, the
investigative agency would simply ground all airplanes and close all

roads.”

–Beyond Agile

“Proper testing is achieved by appropriately allocating resources to
ensure engineers perform their mission in the most cost-effective

and friction-free manner possible.”

Occupational Safety

• Testing is occupational safety. It is the National Transportation Safety
Board (NTSB) of software construction

• Project Managers are the Underwriter’s Insurance, there to economically
balance safety procedure using science

• Testing allows software architects to confront complexity with a clarity and
composure that comes only from a sense of safety and security

Anatomy of a Release Plan
The Seven Rudimentary Elements Of Communication

7 Rudimentary Elements
1. A central authority to govern approach, a style guide

2. Each Cycle has a release plan, give it a memorable name

3. Balance and serialize—a strategy of schedule ownership and visibility

4. Release notes discuss what changed from the original plan

5. Candidate release docket lists when and why release candidates were rejected

6. Post-mortem outlines what went well, and what can be improved

7. A diary of dated log entries or lineage-report contains historic events  
of merit, spanning the lifecycle of the product

“Software Capital” &
The Pursuit of Quality

Forces In Motion

–Alan Page, American Computer Scientist

“If we want to be serious about quality, it is time to get tired of
finding bugs and start preventing their happening in the first

place.”

What exactly is
Software Quality?

Quality is the will behind
extending ourselves and our

effort

The Pursuit of Quality

• Quality is the will behind extending ourselves and our effort —without it
our software construction engine will run dry

• This pursuit of Quality is the flow of energy we tap into for effective turn of
phase

• Quality is everywhere, it is the mortar holding the bricks of our Cathedral,
the fabric that binds it all together

What Goes Around
Comes Around

–Beyond Agile

“When we think of cyclic software construction, we don’t envision a
cascade, or sprint to a goalpost —but rather an opportunity for

tapping into a continuous flow of natural energy”

Forces in Motion
Schedule, urgency and quality

mix together and combine,
providing the fuel to advance our
position, and the control we use

to navigate

–Beyond Agile

“The call of urgency and the pressure of schedule are held in place
by the power of quality.”

–Anonymous

“Quality. Up yours.”

Thank You
beyondagilethebook.com

